JEE-Main-17-03-2021-Shift-2 (Memory Based) PHYSICS

Question: If $\vec{E}=\frac{3}{5} \hat{i}+\frac{4}{5} \hat{j}$, then find electric flux through an area of $0.4 \mathrm{~m}^{2}$ parallel to $\mathrm{y}-\mathrm{z}$ plane.

Options:

(a) $0.12 \frac{\mathrm{Nm}^{2}}{\mathrm{C}}$
(b) $0.24 \frac{\mathrm{Nm}^{2}}{\mathrm{C}}$
(c) $0.36 \frac{\mathrm{Nm}^{2}}{\mathrm{C}}$
(d) $0.48 \frac{\mathrm{Nm}^{2}}{\mathrm{C}}$

Answer: (b)

Solution:

$\vec{E}=\frac{3}{5} \hat{i}+\frac{4}{5} \hat{j}$
$\vec{A}=\left(0.4 m^{2}\right) \hat{i}$
$\phi=\vec{E} \cdot \vec{A}$
$\phi=\left(\frac{3}{5} \hat{i}+\frac{4}{5} \hat{j}\right) \cdot(0.4 \hat{i})$
$\phi=\frac{3}{5} \times 0.4 \frac{\mathrm{Nm}^{2}}{C}$
$\phi=0.24 \frac{N m^{2}}{C}$

Question: If amplitude of both the SHMs is same then find the ratio of maximum velocities of the two cases.

Options:

(a) $\sqrt{\frac{k_{2}}{k_{1}}}$
(b) $\sqrt{\frac{k_{1}}{k_{2}}}$
(c) $\frac{k_{2}}{k_{1}}$
(d) $\frac{k_{1}}{k_{2}}$

Answer: (b)

Solution:

$\omega_{2}=\sqrt{\frac{k_{2}}{m}}$
$V_{2(\max)}=A \sqrt{\frac{F_{2}}{m}}$.

Question: If the carrier wave is given by $y_{c}=A_{c} \sin \omega_{c} t$ and message signal is $y_{s}=A_{s} \sin \omega_{s} t$, find the bandwidth of the AM wave (in Hz)?
Options:
(a) $\frac{\omega_{s}}{\pi}$
(b) $\frac{2 \omega_{s}}{\pi}$
(c) $\frac{\omega_{c}-\omega_{s}}{\pi}$
(d) $\frac{2\left(\omega_{c}-\omega_{s}\right)}{\pi}$

Answer: (a)

Solution:

Amplitude modulated signal contains frequencies.
$\left(\omega_{c}-\omega_{s}\right) t o\left(\omega_{c}+\omega_{s}\right)$
Bandwidth $=\omega_{c}+\omega_{s}-\omega_{c}+\omega_{s}$
Frequency $=\frac{2 \omega_{s}}{2 \pi}=\frac{\omega_{s}}{\pi}$

Question: Particles on a string vibrate with amplitude of 6 cm , speed of wave is $300 \mathrm{~m} / \mathrm{s}$ and angular frequency of oscillations is 245 . Find wave equation of wave is travelling along positive x direction.

Options:

(a) $y=0.06 \sin \left(245 t-\frac{49}{60} x\right)$
(b) $y=0.06 \sin \left(245 t+\frac{49 x}{60}\right)$
(c) $y=0.06 \sin (245 t-300 x)$
(d) $y=0.06 \sin (245 t+300 x)$

Answer: (a)

Solution:

From the question,
$A=6 \mathrm{~cm}=0.06 \mathrm{~m}$.
$u=300 \mathrm{~m} / \mathrm{s}$
$\omega=245 \mathrm{~m} / \mathrm{s}$
$k=\frac{\omega}{v}$
$k=\frac{245}{300}$
$k=\frac{49}{60}$
General equation of wave traveling along +ve x -direction is given by $y=A \sin (\omega t-k x)$
So, $y=0.06 \sin \left(245 t-\frac{49}{60} x\right)$

Question: Light of frequency f_{1} and f_{2} fall on same metal and the max speed of photo electron is V_{1} and V_{2} respectively and mass is m. Find relation between V_{1} and V_{2} ?

Options:

(a) $V_{2}^{2}-V_{1}^{2}=\frac{h}{2 m}\left(f_{2}-f_{1}\right)$
(b) $V_{2}^{2}-V_{1}^{2}=\frac{h}{m}\left(f_{2}-f_{1}\right)$
(c) $V_{2}^{2}-V_{1}^{2}=\frac{2 h}{m}\left(f_{2}-f_{1}\right)$
(d) $V_{2}-V_{1}=\frac{2 h}{m}\left(f_{2}-f_{1}\right)$

Answer: (a)
Solution:
$(K . E)_{\text {max }}=h f-\phi \quad[\phi=$ work function $]$
$\frac{1}{2} m v_{2}^{2}=h f_{2}-\phi$
$\frac{1}{2} m v_{1}^{2}=h f_{1}-\phi$

Equation (i)-(ii)s
$\frac{1}{2} m v_{2}{ }^{2}-\frac{1}{2} m v_{1}^{2}=\left(h f_{2}-\phi\right)-\left(h f_{1}-\phi\right)$
$\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right)=h f_{2}-h f_{1}$
$v_{2}{ }^{2}-v_{1}{ }^{2}=\frac{2 h}{m}\left[f_{2}-f_{1}\right]$
Question: Find R such that potential difference across 2ε is zero?

Options:

(a) $\frac{R_{1}+R_{2}}{2}$
(b) $R_{1}-2 R_{2}$
(c) $\frac{R_{1}-R_{2}}{2}$
(d) $\frac{R_{1}-2 R_{2}}{2}$

Answer: (d)

Solution:

$i=\frac{V_{e q}}{R_{e q}}$
$=\frac{3 \varepsilon}{R_{1}+R_{2}+R}$
Now, $V_{A}-2 \varepsilon+i R_{1}=V_{B}$
$\Rightarrow V_{A}-V_{B}=2 \varepsilon-i R_{1}$
According to question,
$2 \varepsilon-i R_{1}=0$
$\Rightarrow 2 \varepsilon=\frac{3 \varepsilon}{R_{1}+R_{2}+R} \cdot R_{1}$
$\Rightarrow 2 R_{1}+2 R_{2}+2 R=3 R_{1}$
$\Rightarrow R=\frac{R_{1}-2 R_{2}}{2}$

Question: If ω is doubled in purely inductive circuit. Find the effect on X_{L} and i?

Options:

(a) No change
(b) Both are doubled
(c) X_{L} is doubled, current is halved
(d) X_{L} is halved, current is doubled

Answer: (c)
Solution:
$X_{L}=\omega L$
As ω is doubled, so X_{L} will also be doubled.
Now, $i=\frac{V}{X_{L}}=\frac{V}{\omega L}$
So, if ω is doubled, then i will be halved.

Question: Match the following for AC circuits

Column 1	Column II
1) purely inductive	p) Voltage leads current
2) Purely capacitive	q) current and voltage in phase
3) Purely resistive	r) Current leads voltage
4) Series LCR	s) Current may lead or lag or be in phase of voltage

Answer:

$1 \rightarrow p$
$2 \rightarrow r$
$3 \rightarrow q$
$4 \rightarrow s$

Solution:

In purely inductive circuit current logs voltage by 90 degree. Or voltage leads current by 90 degree.
In purely capacitive circuit current leads voltage by 90 degree.

In purely resistive circuit current and voltage are in phase.
In series LCR circuit current may lead or log or be in phase of voltage depending upon X_{L} and X_{C} value.

Question: Identify the equivalent logic gale.

Options:

(a) NOR
(b) NAND
(c) XOR
(d) NOT

Answer: (c)

Solution:

$\gamma=\overline{(A \cdot B)} \cdot(A+B)$
$=(\bar{A}+\bar{B}) \cdot(A+B)$
$=A \bar{A}+A \bar{B}+B \bar{A}+B \bar{B}$
$=A \bar{B}+\bar{A} B$
$=A \oplus B$
So, the given circuit is XOR Gate.

Question: If the velocity of a particle moving is $\mathrm{V}=\mathrm{a}+\mathrm{gt}+\mathrm{ft}^{2}(\mathrm{a}, \mathrm{g}, \mathrm{f}$ are constants). At $\mathrm{t}=$ 0 , body is at origin. Find the displacement after $\mathrm{t}=1 \mathrm{sec}$.

Options:

(a) $a+g+f$
(b) $g+2 f$
(c) $a+\frac{g}{2}+\frac{f}{3}$
(d) $\frac{a}{2}+\frac{g}{3}+\frac{f}{4}$

Answer: (c)

Solution:

Given that
$V=a+g t+f t^{2}$
So, $\frac{d x}{d t}=a+g t+f t^{2}$
$\int_{0}^{x} d x=\int_{0}^{1}\left(a+g t+f t^{2}\right) d t$
$(x-0)=\left[a t+\frac{g t^{2}}{2}+\frac{f t^{3}}{3}\right]_{0}^{1}$
$x=a+\frac{g}{2}+\frac{f}{3}$

Question: If initial amplitude during a damped oscillation of mass m is $12 \mathrm{~cm} \&$ after 2 minutes it reduces to 6 cm , then find the damping constant (b).
Options:
(a) $m \ln 2$
(b) $2 m \ln 2$
(c) $m^{2} \ln 2$
(d) $\frac{1}{m^{2}} \ln 2$

Answer: (a)

Solution:

$$
\begin{aligned}
& A=A_{0} e^{-b t / 2 m} \\
& 6=12 e^{-\frac{2 b}{2 m}} \\
& \frac{1}{2}=e^{-\frac{b}{m}} \\
& e^{b / m}=2 \\
& \frac{b}{m}=\ln 2 \\
& h=m \ln 2
\end{aligned}
$$

Question: In the fig shown, u-shaped wire, a current i is flowing as shown. Section PQR is a semi circle of radius a. If O is origin then find magnetic field at O .

Options:

(a) $\left(\frac{\mu_{0} i}{2 \pi a}+\frac{\mu_{0} i}{4 a}\right) \hat{k}$
(b) $\frac{\mu_{0} i}{4 a} \hat{k}$
(c) $-\left(\frac{\mu_{0} i}{2 \pi a}+\frac{\mu_{0} i}{4 a}\right) \hat{k}$
(d) $-\frac{\mu_{0} i}{4 a} \hat{k}$

Answer: (a)

Solution:

Magnetic field due to two semi-infinite wire (B_{1})
$\vec{B}_{1}=\frac{\mu_{0} i}{4 \pi a} \hat{k}+\frac{\mu_{0} i}{4 \pi a} \hat{k}$
Magnetic field due to semi-circular cell (B_{2})
$\vec{B}_{2}=\frac{\mu_{0} i}{4 a} \hat{k}$
So, Net magnetic field at O ($\mathrm{B}_{\text {net }}$)
$B_{\text {net }}=\vec{B}_{1}+\vec{B}_{2}$
$=\left(\frac{\mu_{0} i}{4 \pi a}+\frac{\mu_{0} i}{4 \pi a}+\frac{\mu_{0} i}{4 a}\right) \hat{k}$
$B_{\text {net }}=\left(\frac{\mu_{0} i}{2 \pi a}+\frac{\mu_{0} i}{4 a}\right) \hat{k}$

Question: A sound wave travelling at $300 \mathrm{~m} / \mathrm{s}$, having frequency of 245 Hz , has maximum to and fro displacement of 6 cm . Find wavelength

Options:

(a) $\frac{60}{49} m$
(b) $\frac{50}{49} m$
(c) $\frac{79}{50} m$
(d) $\frac{39}{29} m$

Answer: (a)

Solution:

$V_{\text {sound }}=300 \mathrm{~m} / \mathrm{s}$
$f=245 \mathrm{~Hz}$
$A=6 \mathrm{~cm}$
We know
$V_{\text {sound }}=f \lambda \Rightarrow \lambda=\frac{V_{\text {sound }}}{f}$
$\lambda=\frac{300}{245}=\frac{60}{49} m$
$\lambda=\frac{60}{49} m$

Question: A sphere of radius 1 cm , moving with $1 \mathrm{~m} / \mathrm{s}$ starts going up the plane performing pure rolling, on an inclined plane of inclination 30°. Find the total time taken by it to go up \& come down the plane.

Options:

(a) $\frac{7}{25} \mathrm{sec}$
(b) $\frac{14}{25} \mathrm{sec}$
(c) $\frac{21}{25} \mathrm{sec}$
(d) 1 sec

Answer: (b)

Solution:

$a=\frac{g \sin \theta}{1+\frac{k^{2}}{R^{2}}}$
For solid sphere $m k^{2}=\frac{2}{5} m R^{2}$
$k^{2}=\frac{2}{5} R^{2}$
$a=\frac{g \sin 30^{\circ}}{1+\frac{2}{5}}=\frac{5}{7} \times 10 \times \frac{1}{2}=\frac{25}{7} \mathrm{~ms}^{-2}$
From 1st law of motion
$-1=1-\frac{25}{7} t$ (From energy conservation speed will be same when sphere came down)
$-2=-\frac{25}{7} t$
$t=\frac{14}{25} \mathrm{sec}$

Question: An object is taken to a depth of 2 km inside an ocean. Percentage change in volume is 1.36%. Find bulk modules of water
Options:
(a) $1.47 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
(b) $1.08 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
(c) $1.75 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
(d) $2.34 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

Answer: (a)

Solution:

$B=-\frac{p}{\Delta v / v}$
$B=\frac{1000 \times g \times 2 \times 10^{3}}{1.36 / 100}$
$B=\frac{2 \times 10^{7+2}}{1.36}=1.47 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

Question: Radius of planet is R and time for rotation is 24 hrs . A geostationary satellite is at an altitude of 11 R. Find time period of a satellite which is at an altitude of $2 R$?

Options:

(a) 12 hrs
(b) 8 hrs
(c) 4 hrs
(d) 3 hrs

Answer: (d)

Solution:

We know that $T^{2} \propto R^{3}$
$T_{1}^{2} \propto(11 R+R)^{3}$
$T_{2}^{2} \propto(2 R+R)^{3}$
$\Rightarrow \frac{T_{2}}{T_{1}}=\left(\frac{3 R}{12 R}\right)^{3 / 2}$
$\Rightarrow T_{2}=\frac{1}{8} \times 24=3$ hour

Question: A ball falls from a height of 5 m and each time it rises by $\frac{81}{100}$ of its initial height and so on. ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$). Find average speed for a long time?

Options:

(a) $\frac{1000}{19}$
(b) $\frac{905}{361}$
(c) $\frac{1000}{361}$
(d) $\frac{100}{361}$

Answer: (b)

Solution:

Total distance travelled
$H=5+2 \times\left(5 \times \frac{81}{100}+5 \times\left(\frac{81}{100}\right)^{2}+\ldots\right)$
$H=5+2\left(\frac{5 \times \frac{81}{100}}{1-\frac{81}{100}}\right)$
$H=5+2 \times \frac{405}{19}=\frac{810+95}{19}=\frac{905}{19} \mathrm{~m}$
$t=\frac{\sqrt{2 g h}}{g}+2\left[\frac{\sqrt{2 g h \times \frac{81}{100}}}{g}+\sqrt{\frac{2 g h \times\left(\frac{81}{100}\right)^{2}}{g}}+\ldots\right]$
$t=1+2\left[\sqrt{\frac{81}{100}}+\sqrt{\left(\frac{81}{100}\right)^{2}}+\ldots\right]$
$t=1+2\left[\frac{9}{10}+\left(\frac{9}{10}\right)^{2}+\ldots\right]$
$t=\left(1+\frac{\frac{9}{10}}{1-\frac{9}{10}}\right)=19 \mathrm{sec}$
$v_{\text {avg }}=\frac{H}{t}$
$v_{\text {avg }}=\frac{905}{19 \times 19}=\frac{905}{361} \mathrm{~m} / \mathrm{s}$
Question: Mass of boy is 40 kg and block is 50 kg . Assume boy does not slip on block. Find the maximum force that the boy can apply so that block does not slip.

Options:

(a) $f=\frac{900}{2+2 \cos \theta+\sin \theta}$
(b) $f=\frac{900}{2+2 \cos \theta+2 \sin \theta}$
(c) $f=\frac{900}{2+\cos \theta+\sin \theta}$
(d) $f=\frac{900}{2+3 \cos \theta+\sin \theta}$

Answer: (a)

Solution:

For block to not move
$f \geq T+T \cos \theta$
$\mu N=T+T \cos \theta$
$T \sin \theta+N=900$
From (i) and (ii)
$0 \cdot 5 \times(900-T \sin \theta)=T(1+\cos \theta)$
$T=\frac{900}{2+2 \cos \theta+\sin \theta}$
$F_{\text {max }}=T=\frac{900}{2+2 \cos \theta+\sin \theta}$

JEE-Main-17-03-2021-Shift-2 (Memory Based) CHEMISTRY

Question: Match the following.

Ores (Column I)	Chemical formula (Column II)
(A) Hematite	i) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
(B) Magnetite	ii) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(C) Bauxite	iii) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(D) Malachite	iv) $\mathrm{AlO}_{x} \cdot(\mathrm{OH})_{3-2} \mathrm{x}$

Options:

(a) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(b) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(c) $\mathrm{A} \rightarrow$ (iv); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (ii); $\mathrm{D} \rightarrow$ (i)
(d) $\mathrm{A} \rightarrow$ (i); B \rightarrow (iii); $\mathrm{C} \rightarrow$ (ii); $\mathrm{D} \rightarrow$ (iv)

Answer: (b)
Solution: Factual

Question: Which of the following pairs are neutral?

Options:

(a) $\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}$
(b) $\mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{3}$
(c) $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{3}$
(d) $\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}_{3}$

Answer: (a)
Solution: Nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ and nitric oxide (NO) are neutral. Dinitrogen trioxide $\left(\mathrm{N}_{2} \mathrm{O}_{3}\right)$, nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ are acidic

NO \rightarrow Neutral
$\mathrm{N}_{2} \mathrm{O} \rightarrow$ Neutral
$\mathrm{NO}_{2} \rightarrow$ Acidic
$\mathrm{N}_{2} \mathrm{O}_{3} \rightarrow$ Acidic

Question: How many sigma bonds are present in mesityl oxide?

Options:

(a) 5
(b) 8
(c) 10
(d) 15

Answer: (d)

Solution:

Question: Which of the following pairs is different from others?
Options:
(a) Li, Mg
(b) Be, Al
(c) B, Si
(d) Li, Na

Answer: (d)
Solution: All other pairs represent elements having diagonal relationship in periodic table.

Question: Fructose is an example of:

Options:

(a) Aldohexose
(b) Pyranose
(c) Ketohexose
(d) Ketopentose

Answer: (c)
Solution:

Fructose contain ketone as a main functional and having 6-carbon
So, known as Ketohexose

Question: In 1 g of $\mathrm{KBr}, 10^{-5}$ mole percent SrBr_{2} is doped. Find number of cationic vacancies.

Options:
(a) 10^{15}
(b) 5×10^{15}
(c) 6.023×10^{16}
(d) 5×10^{14}

Answer: (d)
Solution: Moles of $\mathrm{KBr}=\frac{1}{119}$
$\frac{1}{119}$ moles of KBr will be doped with $\frac{10^{-5}}{100} \times \frac{1}{119}$ moles of SrBr_{2}
One Sr^{2+} ion will create one cationic vacancy
Thus, total number of cationic vacancies
$\frac{1}{119} \times 10^{-7} \times 6.023 \times 10^{23}$
$=0.05 \times 10^{16}$
5×10^{14}

Question: In solvay process, during restoration of NH_{3}, the by-product formed is:
Options:
(a) $\mathrm{Ca}(\mathrm{OH})_{2}$
(b) CaCl_{2}
(c) NaHCO_{3}
(d) $\mathrm{NH}_{4} \mathrm{Cl}$

Answer: (b)
Solution: In solvay process, NH_{3} is recovered when the solution containing $\mathrm{NH}_{4} \mathrm{Cl}$ is treated with $\mathrm{Ca}(\mathrm{OH})_{2}$. Calcium chloride is obtained as a by-product
$2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$

Question: If colloid is negatively charged then, the one which coagulates most effectively is:

Options:

(a) Na^{+}
(b) Ba^{2+}
(c) $\mathrm{PO}_{4}{ }^{3-}$
(d) $\mathrm{SO}_{4}{ }^{2-}$

Answer: (b)
Solution: According to Hardy-Schulze rule, greater is the valency of Flocculating ion (having charge opposite to charge on colloid), greater is its coagulation causing power

Question: An aqueous solution of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\alpha=1)$ has molality $=1$ molal. If the boiling point of this solution is same as that of aqueous solution of substance A having mass percentage of $\mathrm{A}=19.1 \%$. Find the molar mass of $\mathrm{A}(\mathrm{ing} / \mathrm{mol})$
Options:
(a) 47.22
(b) 57.19
(c) 32.15
(d) 236.1

Answer: (a)
Solution: Since boiling point and the solvent is same for both solution
$(\Delta \mathrm{Tb})_{1}=(\Delta \mathrm{Tb})_{2}$
$\Rightarrow i_{1} \cdot m_{1}=i_{2} \cdot m_{2}$
$\Rightarrow 5 \times 1=\frac{1 \times 19.1 \times 1000}{\mathrm{M} \times 80.9}$
$\Rightarrow \mathrm{M}=\frac{19.1 \times 1000}{5 \times 80.9}=47.22 \mathrm{~g} / \mathrm{mol}$

Question: Fe is in its ground state. Find its spin magnetic moment.

Options:

(a) 1.9 B.M
(b) 2.5 B.M
(c) $3.1 \mathrm{~B} . \mathrm{M}$
(d) $4.9 \mathrm{~B} . \mathrm{M}$

Answer: (d)

Solution:

$\mathrm{Fe}=[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$

$\mathrm{n}=4$
$\mu=\sqrt{n(n+2)}$ B. M
$=\sqrt{24}$ B.M
$=4.9 \mathrm{~B} . \mathrm{M}$

Question: Which of the following is linear molecule?

Options:

(a) $\mathrm{N}_{2} \mathrm{O}$
(b) ClO^{-}
(c) $\mathrm{N}_{3}-$
(d) All of these

Answer: (d)

Solution:

$\mathrm{N}_{3}{ }^{-}$

$\mathrm{N}_{2} \mathrm{O}$

Question:

Sucrose $\xrightarrow{\text { Enzymel }}$ Fructose + Glucose
Glucose $\xrightarrow{\text { Enyyme2 }}$ Ethyl alcohol
Identify enzyme 1 and enzyme 2

Options:

(a) Invertase, Maltase
(b) Maltase, Zymase
(c) Invertase. Zymase
(d) Zymase, Invertase

Answer: (c)

Solution:

Sucrose $\xrightarrow{\text { Invertase }}$ Fructose + Glucose
Glucose $\xrightarrow{\text { Zymase }}$ Ethyl alcohol

Question: What are the common oxidation states of Chromium?
Options:
(a) +1 to +6
(b) +2 to +6
(c) +3 to +6
(d) +1 and +3

Answer: (b)

Solution: Chromium shows oxidation number +2 to +6 , out of which +3 and +6 are most common

Question: Which series in hydrogen line spectrum falls under visible region?
Options:
(a) Lyman
(b) Balmer
(c) Paschen
(d) Pfund

Answer: (b)
Solution: Factual

Question: Primary, secondary and tertiary amines can be distinguished by which test?
Options:
(a) $\mathrm{KOH}, \mathrm{CHCl}_{3}$
(b) Para toluene sulfonyl chloride
(c) Benzene sulfonic acid
(d) Hofmann mustard oil reaction

Answer: (b)
Solution: Hinsberg reagent

(Base soluble compound)

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{2} \mathrm{Cl}+\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}\right)_{3}-\mathrm{N} \rightarrow$ No reaction

Question: Match the following:

Column I	Column II
(A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$	i) Linkage
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$	ii) Coordination
(C) $\left[\mathrm{Cr}\left(\mathrm{H}_{2}\right)_{6}\right)_{6} \mathrm{Cl}_{3}$	iii) Optical
(D) $\mathrm{Cis}-\left[\mathrm{CrCl}_{2} \mathrm{Cn}_{2}\right]^{3-}$	iv) Solvate

Options:

(a) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (iii)
(b) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (iii)
(c) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (ii)
(d) A \rightarrow (iv); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iii); $\mathrm{D} \rightarrow$ (i)

Answer: (b)

Solution:

A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$

Interchange of ligands is possible between coordinate entities. Thus, coordination isomerism
B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$
NO_{2} is ambidentate and can be bind as -ONO .
Thus, linkage isomerism
C) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Water can also be present as free solvent molecule i.e.,
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$. Thus solvate isomerism
D) Cis- $\left[\mathrm{CrCl}_{2} \mathrm{en}_{2}\right]^{3-}$

Since, non-superimposable mirror images are possible compound shows optical isomerism

Question: Which of the following is ambident nucleophile?

Options:

(a) $\mathrm{KCN} / \mathrm{AgCN}$
(b) $\mathrm{KNO}_{2} / \mathrm{AgNO}_{2}$
(c) $\mathrm{KI} / \mathrm{AgI}$
(d) Both (a) and (b)

Answer: (d)
Solution: The nucleophiles that can attack through two different sites are known as ambident nucleophiles. Ambident nucleophile are having 2 donor sites.

Question: Which of the following can be estimated by Kjeldahl's method?

Options:

(a)

(b)

(c)

(d)

Answer: (d)

Solution: The Kjeldahl's method is not applicable to nitro, diazogroups and compound in which nitrogen atom present in the ring
Because in the above three case nitrogen atom can't be converted to ammonium sulphate under the reaction conditions

Question: Which of the following is wrong for eutrophication?

Options:

(a) Detergents increase it
(b) Fertilizer increase it
(c) Plant growth increase
(d) Not enough nutrients for plants to grow

Answer: (c)
Solution: eutrophication decreases dissolved oxygen of water

Question: S1: 2-methyl butane is oxidized by KMnO_{4} to 2-methyl-2-butanol.
S2: n-alkane is easily oxidized to alcohol by KMnO_{4}

Options:

(a) Both S 1 and S 2 are correct
(b) S 1 is correct, S 2 is wrong
(c) S 2 is correct, S 1 is wrong
(d) Both S1 and S2 are wrong

Answer: (b)
Solution: KMnO_{4} oxidises alkanes containing tertiary hydrogen to corresponding alcohols

So, S 1 is correct while S 2 is wrong

Question: In the reaction of aniline with HNO_{3}, meta product is formed as 47% because

Options:

(a) Anilinium ion is formed
(b) NH_{2} is meta directing
(c) Of low temperature
(d) NO_{2} is meta directing

Answer: (a)
Solution:

In acidic medium Anilinium ion is formed which is meta directing in nature

Question: Find the compound in which hydrolysis does not take place
Options:
(a) SF_{6}
(b) BF_{3}
(c) XeF_{4}
(d) XeF_{6}

Answer: (a)
Solution: In SF_{6} the fluorine atoms attached to the sulphur act as shield, and that's why SF_{6} is chemically inert towards hydrolysis

Question: $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$. Find the hybridisation and magnetic character

Options:

(a) d^{2} sp 3, paramagnetic
(b) $\mathrm{d}^{2} \mathrm{sp}^{3}$, diamagnetic
(c) $\mathrm{sp}^{3} \mathrm{~d}^{2}$, paramagnetic
(d) $\mathrm{sp}^{3} \mathrm{~d}^{2}$, diamagnetic

Answer: (a)
Solution: $\mathrm{Fe}^{3+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
Since, CN^{-}is a strong field ligand

Thus, hybridization $\Rightarrow \mathrm{d}^{2} \mathrm{sp}^{3}$
Magnetic character \Rightarrow paramagnetic

Question:

Options:

(a)

(b)

(c)

(d)

Answer: (a)
Solution:

Alkanes having six to 10 carbon atoms are converted into benzene and its homologues at high pressure and temperature in presence of catalyst.

JEE-Main-17-03-2021-Shift-2 (Memory Based)
 MATHEMATICS

Question: $16(p \wedge q) \oplus(p \otimes q)$ is tautology, $\oplus, \otimes=$
Options:
(a) $\rightarrow \rightarrow$
(b) $\wedge \rightarrow$
(c) $\vee \rightarrow$
(d) $\wedge \vee$

Answer: (a)

Solution:

$(p \wedge q) \rightarrow(p \rightarrow q)$
$(p \wedge q) \rightarrow(\sim p \vee q)$
$(\sim p \vee \sim q) \vee(\sim p \vee q)$
$\sim p \vee(\sim q \vee q) \Rightarrow$ Tautology
$\Rightarrow \oplus \Rightarrow \rightarrow$
$\otimes \Rightarrow \rightarrow$

Question: $S_{1}=\{|z-1|<\sqrt{2}\}, S_{2}=\{\operatorname{Re}(z(1-i))\} \geq 1, S_{3}=\{\operatorname{Im} z<1\}$. Then $S_{1} \cap S_{2} \cap S_{3}$

Options:

(a) is singletonset
(b) Has so many elements
(c) Has exactly 2 elements
(d) Is null set

Answer: (b)

Solution:

$$
S_{1}=|z-1|<\sqrt{2} \Rightarrow(x-1)^{2}+y^{2}<2
$$

$S_{2}=\operatorname{Re}(z(1-i)) \geq 1 \Rightarrow x+y \geq 1$
$S_{3}=\operatorname{Im}(z)<1 \Rightarrow y<-1$
$\Rightarrow S_{1} \cap S_{2} \cap S_{3}$ has so many elements

Question: $\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]+\cos ^{-1}\left[x^{2}-\frac{2}{3}\right]=x^{2}$, number of solutions in $x \in(1,1)$

Options:

(a) 0
(b) 2
(c) 3
(d) 4

Answer: (a)
Solution:
$\sin ^{-1}\left[x^{2}+\frac{1}{3}\right]+\cos ^{-1}\left(\left[x^{2}+\frac{1}{3}\right]-1\right)=x^{2} ; x \in(-1,1)$
$\Rightarrow \sin ^{-1}(t)+\cos ^{-1}(t-1)=x^{2}$, where $t=\left[x^{2}+\frac{1}{3}\right]=$ Integer
$\therefore t=0,1$
(a) when $t=0 \Rightarrow x^{2}=\pi$ and $x^{2}<\frac{2}{3}$
(b) when $t=1 \Rightarrow x^{2}=\pi$ and $\frac{2}{3}<x^{2}<\frac{5}{3}$

No solution

Question: Variance of $3 n$ observations is 4 mean of first $2 n$ observations is 6 and mean of next n observations is 3 . If 1 is added in first 2 n observation and 1 is subtracted from last n observations than find new variance.

Options:

(a)
(b)
(c)
(d)

Answer: ()

Solution:

Given observation be
$x_{1}, x_{2}, x_{3}, x_{4} \ldots x_{2 n}, x_{2 n+1} \ldots x_{3 n}$
$\therefore \frac{x_{1}+x_{2}+\ldots+x_{2 n}}{2 n}=6$
And $\frac{x_{2 n+1}+x_{2 n+2}+\ldots+x_{3 n}}{n}=3$
$\therefore x_{1}+x_{2}+\ldots .+x_{3 n}=15 n$
Thus mean of $3 n$ observation $=\frac{15 n}{3 n}=5$
Now, given variance is 4
$\therefore \frac{\sum_{i=1}^{3 n} x_{i}{ }^{2}}{3 n}-(\bar{X})^{2}=4$
$\therefore \frac{\sum_{i=1}^{3 n} x_{i}{ }^{2}}{3 n}=4+25$
$\sum_{i=1}^{3 n} x_{i}{ }^{2}=87 n$
Now new mean will be \bar{X}^{\prime}
$=\frac{x_{1}+x_{2}+\ldots+x_{3 n}+2 n(1)-(1 \times n)}{3 n}$
$=\frac{x_{1}+x_{2}+\ldots+x_{3 n}}{3 n}+\frac{n}{3 n}$
$\bar{X}^{\prime}=\frac{16}{3}$
Now, new variance
$=\frac{\left(\sum_{i=1}^{2 n}\left(x_{i}+1\right)^{2}+\sum_{i=2 n+1}^{2 n}\left(x_{i}-1\right)^{2}\right)}{3 n}-\left(\bar{X}^{\prime}\right)^{2}$
$=\frac{\left(\sum_{i=1}^{3 n}\left(x_{i}\right)^{2}+2 n(1)+n(1)+2 \sum_{i=1}^{2 n} x_{i}-2 \sum_{i=2 n+1}^{3 n} x_{i}\right)}{3 n}-\left(\bar{X}^{\prime}\right)^{2}$
$=\frac{87 n+3 n+2(12 n)-2(3 n)}{3 n}-\left(\frac{16}{3}\right)^{2}$

$$
=\frac{108}{3}-\frac{256}{3}=\frac{68}{9}
$$

Question: $\sum_{r=0}^{6}{ }^{n} C_{r} \times{ }^{n} C_{6-r}=$?

Options:

(a)
(b)
(c)
(d)

Answer: ()

Solution:

$\sum_{r=0}^{6}{ }^{6} C_{r} \times{ }^{6} C_{6-r}={ }^{12} C_{6}$

Question: Probability of ' 0 ' at odd position is $\frac{1}{3}$ and probability of ' 0 ' at even position is $\frac{1}{2}$. Find the probability that 10 is immediately followed by 01 .
Options:
(a)
(b)
(c)
(d)

Answer: ()

Solution:

For $0110 \Rightarrow$ Probability $=\frac{1}{3} \times \frac{1}{2} \times \frac{2}{3} \times \frac{1}{2}=\frac{1}{18}$

Question: Find $\lim _{\theta \rightarrow \infty} \frac{\tan \left(\pi \cos ^{2} \theta\right)}{\sin \left(2 \pi \sin ^{2} \theta\right)}$

Options:

(a) $-\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{-1}{2}$
(d) $\frac{1}{4}$

Answer: (c)

Solution:

$$
\lim _{\theta \rightarrow 0} \frac{\tan \left(\pi \cos ^{2} \theta\right)}{\sin \left(2 \pi \sin ^{2} \theta\right)}
$$

$=\lim _{\theta \rightarrow 0} \frac{\tan \left(\pi \cos ^{2} \theta\right)}{\sin \left(2 \pi \cos ^{2} \theta\right)}=-\lim _{\theta \rightarrow 0} \frac{1}{2} \sec ^{2}\left(\pi \cos ^{2} \theta\right)=\frac{-1}{2}$

Question: $f(x)=\left\{\begin{array}{cl}\left(2-\sin \frac{1}{2}\right) ; & x \neq 0 \\ 0 ; & x=0\end{array}\right.$

Options:

(a) Monotonic in $(-\infty, 0) \cup(0, \infty)$
(b) non Monotonic in $(-\infty, 0) \cup(0, \infty)$
(c)
(d)

Answer: (b)

Solution:

$f(x)=\left\{\begin{array}{lll}2 x-x \sin \frac{1}{x} & ; & x>0 \\ -2 x+x \sin \frac{1}{x} & ; & x<0\end{array}\right.$
$f^{\prime}(x)= \begin{cases}2-\frac{d}{d x}\left[x \sin \frac{1}{x}\right] & ; \\ -2>0 \Rightarrow f^{\prime}(x)>0 \\ -2+\frac{d}{d x}\left[x \sin \frac{1}{x}\right] ; & x<0 \Rightarrow f^{\prime}(x)<0\end{cases}$
$\Rightarrow f(x)$ is non-monotonic in $(-\infty, 0) \cup(0, \infty)$

Question: $f(x)=e^{-x} \sin x, F(x)=\int_{0}^{x} f(t) d t$. Find $\int_{0}^{1} e^{x}\left(F^{\prime}(x)+f(x)\right) d x$ lie in

Options:

(a) $\left(\frac{330}{360}, \frac{331}{360}\right)$
(b) $\left(\frac{327}{360}, \frac{329}{360}\right)$
(c) $\left(\frac{335}{360}, \frac{336}{360}\right)$
(d)

Answer: (a)

Solution:

$f(x)=e^{-x} \sin x ; f^{\prime}(x)=f(x)$
$\therefore I=\int_{0}^{1} e^{x} \cdot 2 f(x) d x=2 \int_{0}^{1} \sin x d x=-2(\cos x)_{0}^{1}$
$=-2[\cos 1-1]=2-2 \cos 1=0.9194 \in\left(\frac{330}{360}, \frac{331}{360}\right)$

Question: $\lim _{n \rightarrow \infty} \frac{[r]+[2 r]+\ldots+[n r]}{n^{2}}$
Options:
(a)
(b)
(c)
(d)

Answer: ()

Solution:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(r+2 r+\ldots . n r)}{n^{2}}-\left[\frac{\{r\}+\{2 r\}+\{3 r\}+\ldots\{n r\}}{n^{2}}\right] \\
& =\lim _{n \rightarrow \infty} \frac{r \cdot n(n+1)}{2 n^{2}}=\frac{r}{2}
\end{aligned}
$$

Question: If angle between tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, ratio of $\operatorname{ar} \triangle P A B$ and ar $\triangle C A B=$

Options:

(a)
(b)
(c)
(d)

Answer: ()

Solution:

Angle between tangents $=2 \theta=\tan ^{-1}\left(\frac{12}{5}\right)$
$\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{17}{5}: r=1$
$6 \tan ^{2} \theta+5 \tan \theta-6=0$
$6 \tan ^{2} \theta+9 \tan \theta-4 \tan \theta-6=0$
$3 \tan \theta(2 \tan \theta+3)-2(\tan \theta+3)=0$
$\Rightarrow \tan \theta=\frac{2}{3}=\frac{A C}{A P}$
$A P=\frac{3 r}{2}=\frac{3}{2}=B P$
$\therefore \frac{A r \triangle P A B}{A r \Delta C A B}=\frac{P A \cdot P B \cdot \sin P}{A C \cdot B C \cdot \sin C}=\frac{\frac{9}{4}\left(\frac{12}{13}\right)}{1\left(\frac{12}{13}\right)}=\frac{9}{4}$

Question: $x^{2}+y^{2}=25$, tangent to it at $(3,4)$ meet axes at P and Q . A circle is drawn passing through origin with its center at incenter of $\Delta \mathrm{OPQ}$. Find radius of that circle
Options:
(a)
(b)
(c)
(d)

Answer: ()

Solution:

Equation of tangent $\Rightarrow 3 x+4 y=25 ; P\left(\frac{25}{3}, 0\right) ; Q\left(0, \frac{25}{4}\right)$
Centre of circle $=\left(\begin{array}{ll}\frac{625}{12} & \frac{625}{30} \\ \frac{300}{12} & \frac{12}{300}\end{array}\right)$
Centre $=\left(\frac{25}{12}, \frac{25}{12}\right)$
\therefore Radius $=\frac{25 \sqrt{2}}{12}$

Question: $\cos x(3 \sin x+\cos x+3) d x=d x(1+y \sin x(3 \sin x+\cos x+3)) y(0)=0$. Find $y\left(\frac{\pi}{3}\right)$.

Options:

(a)
(b)
(c)
(d)

Answer: ()

Solution:

$\cos x(3 \sin x+\cos x+3) \frac{d y}{d x}-y \sin x(3 \sin x+\cos x+3)=1$
$\Rightarrow \frac{d y}{d x}-\tan x y=\frac{1}{\cos x(3 \sin x+\cos x+3)}$
$I F=e^{\int-\tan x d x}=\cos x$
$\therefore y \cos x=\int \frac{d x}{3 \sin x+\cos x+3}=\int \frac{\sec ^{2} \frac{x}{2} d x}{6 \tan \frac{x}{2}+1-\tan ^{2} \frac{x}{2}+3+3 \tan ^{2} \frac{x}{2}}$
$y \cos x=\int \frac{\sec ^{2} \frac{x}{2} d x}{2 \tan ^{2} \frac{x}{2}+6 \tan \frac{x}{2}+4}$
Let $\tan \frac{x}{2}=t \Rightarrow \frac{1}{2} \sec ^{2} \frac{x}{2} d x=d t$
$y \cos x=\int \frac{d t}{t^{2}+3 t+2}=\int \frac{-1}{(t+2)}+\frac{1}{(t+1)} d t$
$y \cos x=\ln \left(\frac{t+1}{t+2}\right)+c$
$y \cos x=\ln \left[\frac{1+\tan \frac{x}{2}}{2+\tan \frac{x}{2}}\right]+c \Rightarrow c=\ln 2$
$y \cos x=\ln 2\left[\frac{1+\tan \frac{x}{2}}{2+\tan \frac{x}{2}}\right]$
At $x=\frac{\pi}{3} \Rightarrow y=2 \ln 2\left[\frac{1+\frac{1}{\sqrt{3}}}{2+\frac{1}{\sqrt{3}}}\right]=2 \ln 2\left(\frac{\sqrt{3}+1}{2 \sqrt{3}+1}\right)$

Question: $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], B=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right] B$ is non-zero matrix, $A B=B, a+d=2021$ find $a d-b c$
Answer: 2020.00

Solution:

$A B=B \Rightarrow\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$
$a \alpha+b \beta=\alpha \Rightarrow(a-1) \alpha+b \beta=0$
$c \alpha+d \beta=\beta \Rightarrow c \alpha+(d-1) \beta=0$
$\Rightarrow\left|\begin{array}{cc}a-1 & b \\ c & d-1\end{array}\right|=0$
$\Rightarrow(a-1)(d-1)-b c=0$
$\Rightarrow a d-(a+d)+1-b c=0$
$a d-b c=(a+d)-1=2020$

Question: $y^{2}=4 x-20$, tangent to this parabola at $(6,2)$ is also tangent to $\frac{x^{2}}{2}+\frac{y^{2}}{b}=1$, find b^{2}.

Answer: 196.00

Solution:

Equation of tangent to $y^{2}=4 x-20$ at $(6,2)$ is
$2 y=2(x+6)-20 \Rightarrow y=x-4$
\because It is tangent to $\frac{x^{2}}{2}+\frac{y^{2}}{b}=1$
$\Rightarrow 16=2 \times 1+b$
$\Rightarrow b=14$
$\Rightarrow b^{2}=196$

Question: $\int_{0}^{10} \frac{\sin [2 \pi x]}{e^{e-[x]}} d x=\alpha e^{-1}+\beta e^{\frac{-1}{2}}+\gamma$. Find $\alpha+\beta+\gamma=$?
Answer: 0.00

Solution:

$$
\begin{aligned}
& I=\int_{0}^{10} \frac{\sin (2 \pi x)}{e^{\{x\}}} d x=10 \int_{0}^{1} e^{-x} \cdot \sin (2 \pi x) d x \\
& =10\left[\frac{e^{-x}}{1+4 \pi^{2}}\{-\sin (2 \pi x)-2 \pi \cos (2 \pi x)\}\right]_{0}^{1}
\end{aligned}
$$

$=\frac{10}{1+4 \pi^{2}}\left[e^{-1}\{-2 \pi\}-\{-2 \pi\}\right]=\frac{20 \pi}{1+4 \pi^{2}}\left[1-\frac{1}{e}\right]$
$\Rightarrow \alpha=\frac{-20 \pi}{1+4 \pi^{2}}, \beta=0, \gamma=\frac{20 \pi}{1+4 \pi^{2}}$
$\Rightarrow \alpha+\beta+\gamma=0$

Question: $x+2 \tan x=\frac{\pi}{2}$ find values of x is $x \in[0,2 \pi]$
Answer: $\mathbf{3 . 0 0}$

Solution:

$x+2 \tan x=\frac{\pi}{2} \Rightarrow \tan x=\frac{\pi}{4}-\frac{x}{2} ; x \in[0,2 \pi]$

Graph of $y=\tan x$ and $y=\frac{\pi}{4}-\frac{x}{2}$ intersects at 3 points

